
Multiplexeur

Positionner le problème

Gare de triage

A la sortie d'une gare de triage, le but de l'aiguilleur est d'amener le train voulu depuis une des voies de garage vers la sortie

Aiguillage

Un multiplexeur fonctionne un peu comme la sortie d'une gare de triage

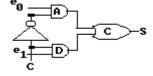
Le but est d'activer les entrées de commande c₁ c₀ pour aiguiller une des entrées e_{ji} vers la sortie S.

Multiplexeur $2 \rightarrow 1$

Synoptique de la bête

Comme son nom l'indique, il permet de multiplexer une des 2 entrées e₀ e₁ vers la sortie S (à droite).

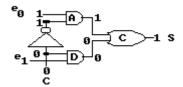
Pour commander à ce circuit de choisir entre deux entrées, il suffit d'un bit de commande co.


Schéma équivalent électrique

Ce montage électrique permet au courant de passer depuis une des 2 entrées e_0 e_1 vers la sortie S (à droite). Il est bien connu des électricien sous le nom d'inverseur.

<u>Câblage</u>

Voici son câblage électrique :


Les circuits A et D sont des fonctions logiques ET.

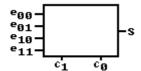
Le circuit C est une fonction logique OU.

Vérification du fonctionnement

Vérifions le bon fonctionnement du circuit pour le cas où la commande C est à 0.

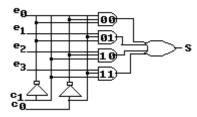
Jean-François Lucas 09/04/10 Page(2

On voit que le circuit ET logique A laisse passer les signaux car la sortie de l'inverseur lui fournit un niveau 1.

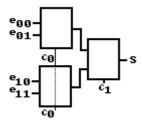

On voit que le circuit ET logique D bloque les signaux car il reçoit un 0 de l'entrée C.

On voit que le circuit OU logique C laisse passer les signaux provenant de A, car la sortie de D lui fournit un niveau 0.

Multiplexeur $4 \rightarrow 1$


Synoptique de la bête

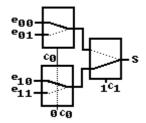
Comme son nom l'indique, il permet de multiplexer une des 4 entrées e_{00} e_{01} e_{10} e_{11} vers la sortie S (à droite).


Pour commander à ce circuit de choisir entre 4 entrées, il faut 2 bits de commande c1 et c0.

<u>Câblage</u>

Ci-dessus son câblage réel est donné à titre indicatif.

Plus simplement, voici comment le câbler avec trois multiplexeurs 2 vers 1 :

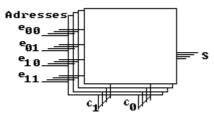


La commande c₀ aiguille entre les entrées e_{i0} et e_{i1} (j variant de 0 à 1)

La commande c_1 aiguille entre les e_{0i} et e_{1i} .(i variant de 0 à 1).

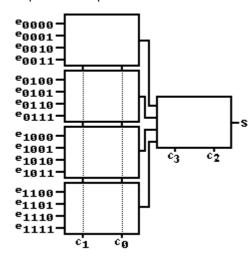
<u>Vérification du fonctionnement</u>

Mettons la commande c_1 à 1 et la commande c_0 à 0, dans le but d'obtenir l'entrée e_{10} en sortie.



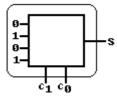
Avec c_1 à 1 et c_0 à 0, on vérifie bien que l'entrée e_{10} est bien aiguillée vers la sortie.

Généralisation


Multiplexeur 4x4

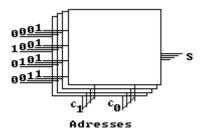
En montant en parallèle 4 multiplexeurs 4 vers 1, on peut ainsi commuter 4 mots de 4 bits.

Multiplexeur 16x1


En fait cette architecture est généralisable. Par exemple, en montant 5 multiplexeurs, on peut ainsi commuter 16 bits, et fabriquer un multiplexeur 16 vers 1.

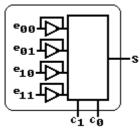
Applications du multiplexeur

Une ROM avec un multiplexeur


Mémoire ROM 4x1

Pour ce faire, il suffit de câbler physiquement les entrées c_{ji} à la masse ou au +, i.e. à 0 ou 1, et de ne livrer au client qu'un boîtier, englobant ce câblage et présentant les deux entrées de commande c_1 et c_0 . Elles sont alors perçues par ce dernier, comme les adresses de la ROM.

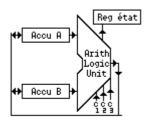
Mémoire ROM 4x4


D'abord, nous avons vu qu'en montant en parallèle 4 multiplexeurs, on peut ainsi commuter 4 mots de 4 octets. Ensuite nous avons vu comment câbler physiquement les entrées d'un multiplexeur pour en faire un ROM.

Ainsi, en combinant ces deux techniques, on obtient une mémoire ROM de 4 mots de 4 bits. Dans le cas présent, le contenu de l'adresse 10 est 0101.

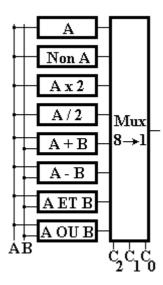
Mémoire RAM 4x1

De la même façon, on peut fabriquer une mémoire RAM de 4 adresses de 1 bit avec un multiplexeur 4 bits vers 1. Au lieu de câbler les entrées du multiplexeur à la masse ou au +, on connecte chacune à un bistable.



Notez tout de même que le mécanisme d'écriture des bistables n'est pas précisé, il demandera un démultiplexeur pour adresser l'écriture de l'information en entrée.

Comment câbler une UAL (Unité Arithmétique et Logique)


Synoptique général d'une U.A.L.

Voici le synoptique général d'une U.A.L.. Elle reçoit en entrée les données à traiter des deux accumulateurs A et B et les commandes qui précisent le traitement à effectuer. Elle fournit en sortie le résultat du traitement qui peut retourner vers un des accumulateurs et le registrer d'état du traitement (retenue, dépassement de capacité).

Réalisation d'une U.A.L.

Le schéma ci-dessous montre comment construire une UAL (Unité Arithmétique et Logique), au moyen d'un multiplexeur $8 \rightarrow 1$.

Dans le cas de traitement de mots de 16 bits, il faut bien voir que si le multiplexeur aiguille 8 voies vers une, le bus de données fait une taille de 16 bits (augmentée de 1 pour la propagation de la retenue).